[ editar artigo]

O efeito do treinamento com levantamento de pesos( "catch" e "pull") nos saltos verticais...

O efeito do treinamento com levantamento de pesos(

...("squat jump" e "counter-movement jump") nas adaptações de força e tempo.

O objetivo deste estudo foi examinar as mudanças nas características da curva de força nos saltos verticais, "Squat Jump" (SJ) e "Counter- movement jump" (CMJ) após 10 semanas de treinamento de levantamento de pesos (CATCHING)  ou variações de puxar (PULLING) ou puxar e suas variações que incluíram exercícios com carga de força e velocidade especifica (OL). Vinte e cinco homens treinados de resistência foram aleatoriamente atribuídos aos grupos de "CATCHING", PULLING ou OL. Os participantes completaram um programa de treinamento específico de 10 semanas. SJ e CMJ em altura, força média de propulsão e tempo de propulsão foram comparados na linha de base e após 3, 7 e 10 semanas. Além disso, as curvas de força de força SJ e CMJ normalizadas tem tempo comparadas entre a linha de base e após 10 semanas. Não foram apresentadas diferenças entre grupo. Para qualquer uma das variáveis examinadas, e apenas trivial para pequenas mudanças existiram dentro de cada grupo. As maiores melhorias na altura SJ e CMJ foram produzidas pelos grupos OL e puxar( "pulling"), respectivamente, enquanto apenas as mudanças triviais estavam presentes para o grupo de capturas ("catching"). Essas mudanças foram sustentadas por maiores forças de propulsão e tempos de propulsão reduzidos. O grupo OL exibiu força significativa significativamente durante o SJ e CMJ em comparação com os grupos de "pulling" e "catching", respectivamente. O treinamento com levantamento de pesos ("pulling") e variações levantamento de levantamento de levantamento podem produzir maiores adaptações nos saltos verticais em comparação com o treinamento com levantamento de pesos ("catching") e variações.

 Palavras-chave: salto vertical; impulso; normalização normal; força; poder

Referencias:

1. Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase characteristics of the countermovement jump force-time curve: A comparison of athletes by jumping ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [CrossRef] [PubMed]

2. Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [CrossRef] [PubMed]

3. McMahon, J.J.; Lake, J.P.; Suchomel, T.J. Vertical jump testing. In Performance Assessment in Strength and Conditioning; Comfort, P., Jones, P.A., McMahon, J.J., Eds.; Routledge: New York, NY, USA, 2019; pp. 96–116.

4. Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative net vertical impulse determines jumping performance. J. Appl. Biomech. 2011, 27, 207–214. [CrossRef] [PubMed]

5. Garhammer, J.; Gregor, R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J. Strength Cond. Res. 1992, 6, 129–134.

6. Burkhardt, E.; Barton, B.; Garhammer, J. Maximal impact and propulsive forces during jumping and explosive lifting exercises. J. Appl. Sports Sci. Res. 1990, 4, 107.

7. Hackett, D.; Davies, T.; Soomro, N.; Halaki, M. Olympic weightlifting training improves vertical jump height in sportspeople: A systematic review with meta-analysis. Br. J. Sports Med. 2016, 50, 865–872. [CrossRef]

8. Teo, S.Y.; Newton, M.J.; Newton, R.U.; Dempsey, A.R.; Fairchild, T.J. Comparing the effectiveness of a short-term vertical jump versus weightlifting program on athletic power development. J. Strength Cond. Res. 2016, 30, 2741–2748. [CrossRef]

9. Hoffman, J.R.; Cooper, J.; Wendell, M.; Kang, J. Comparison of olympic vs. Traditional power lifting training programs in football players. J. Strength Cond. Res. 2004, 18, 129–135.

10. Tricoli, V.; Lamas, L.; Carnevale, R.; Ugrinowitsch, C. Short-term effects on lower-body functional power development: Weightlifting vs. Vertical jump training programs. J. Strength Cond. Res. 2005, 19, 433–437. [CrossRef]

11. Hori, N.; Newton, R.U.; Andrews, W.A.; Kawamori, N.; McGuigan, M.R.; Nosaka, K. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J. Strength Cond. Res. 2008, 22, 412–418. [CrossRef]

12. Kipp, K.; Suchomel, T.J.; Comfort, P. Correlational analysis between joint-level kinetics of countermovement jumps and weightlifting derivatives. J. Sports Sci. Med. 2019, 18, 663–668. [PubMed]

13. Otto III, W.H.; Coburn, J.W.; Brown, L.E.; Spiering, B.A. Effects of weightlifting vs. Kettlebell training on vertical jump, strength, and body composition. J. Strength Cond. Res. 2012, 26, 1199–1202. [CrossRef] [PubMed]

14. Suchomel, T.J.; Comfort, P.; Stone, M.H. Weightlifting pulling derivatives: Rationale for implementation and application. Sports Med. 2015, 45, 823–839. [CrossRef] [PubMed]

15. Simenz, C.J.; Dugan, C.A.; Ebben, W.P. Strength and conditioning practices of national basketball association strength and conditioning coaches. J. Strength Cond. Res. 2005, 19, 495–504.

16. Ebben, W.P.; Carroll, R.M.; Simenz, C.J. Strength and conditioning practices of national hockey league strength and conditioning coaches. J. Strength Cond. Res. 2004, 18, 889–897.

17. Comfort, P.; Allen, M.; Graham-Smith, P. Kinetic comparisons during variations of the power clean. J. Strength Cond. Res. 2011, 25, 3269–3273. [CrossRef]

18. Comfort, P.; Allen, M.; Graham-Smith, P. Comparisons of peak ground reaction force and rate of force development during variations of the power clean. J. Strength Cond. Res. 2011, 25, 1235–1239. [CrossRef]

19. Takei, S.; Hirayama, K.; Okada, J. Comparison of the power output between the hang power clean and hang high pull across a wide range of loads in weightlifters. J. Strength Cond. Res. 2020. [CrossRef]

20. Suchomel, T.J.; Sole, C.J. Force-time curve comparison between weightlifting derivatives. Int. J. Sports Physiol. Perform. 2017, 12, 431–439. [CrossRef]

21. Suchomel, T.J.; Wright, G.A.; Kernozek, T.W.; Kline, D.E. Kinetic comparison of the power development between power clean variations. J. Strength Cond. Res. 2014, 28, 350–360. [CrossRef]

22. Kipp, K.; Malloy, P.J.; Smith, J.; Giordanelli, M.D.; Kiely, M.T.; Geiser, C.F.; Suchomel, T.J. Mechanical demands of the hang power clean and jump shrug: A joint-level perspective. J. Strength Cond. Res. 2018, 32, 466–474. [CrossRef] [PubMed]

23. Suchomel, T.J.; Sole, C.J. Power-time curve comparison between weightlifting derivatives. J. Sports Sci. Med. 2017, 16, 407–413. [PubMed]

24. Kipp, K.; Comfort, P.; Suchomel, T.J. Comparing biomechanical time series data during the hang-power clean and jump shrug. J. Strength Cond. Res. 2019. [CrossRef] [PubMed]

25. Suchomel, T.J.; Wright, G.A.; Lottig, J. Lower Extremity Joint Velocity Comparisons during the Hang Power Clean and Jump Shrug at Various Loads, Proceedings of the XXXIInd International Conference of Biomechanics in Sports, Johnson City, TN, USA, 12–16 July 2014; Sato, K., Sands, W.A., Mizuguchi, S., Eds.; International Society of Biomechanics in Sports: Johnson City, TN, USA, 2014; pp. 749–752.

26. Comfort, P.; Dos‘Santos, T.; Thomas, C.; McMahon, J.J.; Suchomel, T.J. An investigation into the effects of excluding the catch phase of the power clean on force-time characteristics during isometric and dynamic tasks: An intervention study. J. Strength Cond. Res. 2018, 32, 2116–2129. [CrossRef]

27. Suchomel, T.J.; Comfort, P.; Lake, J.P. Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond. J. 2017, 39, 10–20. [CrossRef]

28. Comfort, P.; Jones, P.A.; Udall, R. The effect of load and sex on kinematic and kinetic variables during the mid-thigh clean pull. Sports Biomech. 2015, 14, 139–156. [CrossRef]

29. Comfort, P.; Udall, R.; Jones, P.A. The effect of loading on kinematic and kinetic variables during the midthigh clean pull. J. Strength Cond. Res. 2012, 26, 1208–1214. [CrossRef]

30. Meechan, D.; Suchomel, T.J.; McMahon, J.J.; Comfort, P. A comparison of kinetic and kinematic variables during the mid-thigh pull and countermovement shrug, across loads. J. Strength Cond. Res. 2019; in press.

31. Meechan, D.; McMahon, J.J.; Suchomel, T.J.; Comfort, P. A comparison of kinetic and kinematic variables during the pull from the knee and hang pull, across loads. J. Strength Cond. Res. 2020. [CrossRef]

32. Haff, G.G.; Whitley, A.; McCoy, L.B.; O’Bryant, H.S.; Kilgore, J.L.; Haff, E.E.; Pierce, K.; Stone, M.H. Effects of different set configurations on barbell velocity and displacement during a clean pull. J. Strength Cond. Res. 2003, 17, 95–103.

33. Suchomel, T.J.; McKeever, S.M.; Comfort, P. Training with weightlifting derivatives: The effects of force and velocity overload stimuli. J. Strength Cond. Res. 2020, in press.

34. Moulton, L.H. Covariate-based constrained randomization of group-randomized trials. Clin. Trials 2004, 1, 297–305. [CrossRef] [PubMed]

35. Cormie, P.; McGuigan, M.R.; Newton, R.U. Adaptations in athletic performance after ballistic power versus strength training. Med. Sci. Sports Exerc. 2010, 42, 1582–1598. [CrossRef] [PubMed]

36. Suchomel, T.J.; McKeever, S.M.; Sijuwade, O.; Carpenter, L.; McMahon, J.J.; Loturco, I.; Comfort, P. The effect of load placement on the power production characteristics of three lower extremity jumping exercises. J. Hum. Kinet. 2019, 68, 109–122. [CrossRef] [PubMed]

37. Suchomel, T.J.; Beckham, G.K.; Wright, G.A. The impact of load on lower body performance variables during the hang power clean. Sports Biomech. 2014, 13, 87–95. [CrossRef] [PubMed]

38. Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Effect of various loads on the force-time characteristics of the hang high pull. J. Strength Cond. Res. 2015, 29, 1295–1301. [CrossRef] [PubMed]

39. Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Lower body kinetics during the jump shrug: Impact of load. J. Trainol. 2013, 2, 19–22. [CrossRef]

40. Suchomel, T.J.; DeWeese, B.H.; Beckham, G.K.; Serrano, A.J.; Sole, C.J. The jump shrug: A progressive exercise into weightlifting derivatives. Strength Cond. J. 2014, 36, 43–47. [CrossRef]

41. Suchomel, T.J.; DeWeese, B.H.; Beckham, G.K.; Serrano, A.J.; French, S.M. The hang high pull: A progressive exercise into weightlifting derivatives. Strength Cond. J. 2014, 36, 79–83. [CrossRef]

42. DeWeese, B.H.; Serrano, A.J.; Scruggs, S.K.; Burton, J.D. The midthigh pull: Proper application and progressions of a weightlifting movement derivative. Strength Cond. J. 2013, 35, 54–58. [CrossRef]

43. DeWeese, B.H.; Serrano, A.J.; Scruggs, S.K.; Sams, M.L. The clean pull and snatch pull: Proper technique for weightlifting movement derivatives. Strength Cond. J. 2012, 34, 82–86. [CrossRef]

44. DeWeese, B.H.; Scruggs, S.K. The countermovement shrug. Strength Cond. J. 2012, 34, 20–23. [CrossRef]

45. DeWeese, B.H.; Hornsby, G.; Stone, M.; Stone, M.H. The training process: Planning for strength–power training in track and field. Part 2: Practical and applied aspects. J. Sport Health Sci. 2015, 4, 318–324. [CrossRef]

46. DeWeese, B.H.; Sams, M.L.; Serrano, A.J. Sliding toward sochi—Part 1: A review of programming tactics used during the 2010-2014 quadrennial. Natl. Strength Cond. Assoc. Coach 2014, 1, 30–42.

47. Stone, M.H.; O’Bryant, H.S. Weight Training: A Scientific Approach; Burgess International: Minneapolis, MN, USA, 1987.

48. Hardee, J.P.; Lawrence, M.M.; Zwetsloot, K.A.; Triplett, N.T.; Utter, A.C.; McBride, J.M. Effect of cluster set configurations on power clean technique. J. Sports Sci. 2013, 31, 488–496. [CrossRef]

49. Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [CrossRef]

50. Moir, G.L. Three different methods of calculating vertical jump height from force platform data in men and women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [CrossRef]

51. Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [CrossRef]

52. Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L.A. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [CrossRef]

53. Hedges, L.V.; Olkin, I. Estimation of a single effect size: Parametric and nonparametric methods. In Statistical Methods for Meta-Analysis; Academic Press: San Diego, CA, USA, 1985; pp. 75–106.

54. Rhea, M.R. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J. Strength Cond. Res. 2004, 18, 918–920.

55. Enoka, R.M. The pull in olympic weightlifting. Med. Sci. Sports 1979, 11, 131–137.

56. McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [CrossRef]

57. Moolyk, A.N.; Carey, J.P.; Chiu, L.Z.F. Characteristics of lower extremity work during the impact phase of jumping and weightlifting. J. Strength Cond. Res. 2013, 27, 3225–3232. [CrossRef] [PubMed]

58. Comfort, P.; Williams, R.; Suchomel, T.J.; Lake, J.P. A comparison of catch phase force-time characteristics during clean derivatives from the knee. J. Strength Cond. Res. 2017, 31, 1911–1918. [CrossRef] [PubMed]

59. Suchomel, T.J.; Giordanelli, M.D.; Geiser, C.F.; Kipp, K. Comparison of joint work during load absorption between weightlifting derivatives. J. Strength Cond. Res. 2018. [CrossRef]

60. Suchomel, T.J.; Lake, J.P.; Comfort, P. Load absorption force-time characteristics following the second pull of weightlifting derivatives. J. Strength Cond. Res. 2017, 31, 1644–1652. [CrossRef] [PubMed]

61. Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [CrossRef] [PubMed]

62. James, L.P.; Comfort, P.; Suchomel, T.J.; Kelly, V.G.; Beckman, E.M.; Haff, G.G. The impact of power clean ability and training age on adaptations to weightlifting-style training. J. Strength Cond. Res. 2019, 33, 2936–2944. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution

 

Ler matéria completa
Indicados para você